An Efficient Automatic Gait Anomaly Detection Method Based on Semisupervised Clustering
نویسندگان
چکیده
منابع مشابه
An Efficient Parallel Anomaly Detection Algorithm Based on Hierarchical Clustering
For the purpose of improving real time and profiles accuracy, a parallel anomaly detection algorithm based on hierarchical clustering has been proposed. Training and predicting are two busiest processes and they are parallel designed and implemented. Moreover, an abnormal cluster feature tree is built to dig anomalies from normal profiles. A series of experiment results on wellknown KDD Cup 199...
متن کاملAn Efficient Hybrid Clustering-PSO Algorithm for Anomaly Intrusion Detection
Generally speaking, in anomaly intrusion detection, modeling the normal behavior of activities performed by a user or a program is an important issue. Currently most machine-learning algorithms which are widely used to establish user’s normal behaviors need labeled data for training first, so they are computational expensive and sometimes misled by artificial data. This study proposes a PSO-bas...
متن کاملAn Anomaly Detection Method Based on Fuzzy C-means Clustering Algorithm
Anomaly detection based on network flow is the basis of the monitoring and response application of anomaly, it is also the important content in the fields of network and security management. In this paper, the fuzzy C-means clustering (FCM) algorithm was applied to detect abnormality which based on network flow. For the problems of the FCM, for example, it needs to preset a number of clusters a...
متن کاملAn Entropy-Based Network Anomaly Detection Method
Data mining is an interdisciplinary subfield of computer science involving methods at the intersection of artificial intelligence, machine learning and statistics. One of the data mining tasks is anomaly detection which is the analysis of large quantities of data to identify items, events or observations which do not conform to an expected pattern. Anomaly detection is applicable in a variety o...
متن کاملEfficient GAN-Based Anomaly Detection
Generative adversarial networks (GANs) are able to model the complex highdimensional distributions of real-world data, which suggests they could be effective for anomaly detection. However, few works have explored the use of GANs for the anomaly detection task. We leverage recently developed GAN models for anomaly detection, and achieve state-of-the-art performance on image and network intrusio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Intelligence and Neuroscience
سال: 2021
ISSN: 1687-5273,1687-5265
DOI: 10.1155/2021/8840156